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LETTER TO THE EDITOR 

Some solutions of SU(2) Yang-Mills-Higgs system 

Dipankar Ray 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 

Received 30 November 1978 

Abstract. An attempt is made to generalise the solutions of the SU(2) Yang-Mills-Higgs 
system obtained by Mecklenburg and O'Brien. A new soliton solution is obtained when the 
Higgs' field is zero. 

1. Introduction 

It has been shown by Mecklenburg and O'Brien (1978) that for the Lagrangian 

(1.1) 

4" = F"H(r, t ) / e r ,  A :  = F"J(r, t ) / e r ,  A4 = eaijFj(l -K(r ,  t ) ) / e r ,  (1.2) 

2 = - ~ F W ~ F "  - 1 2 r c l a r :  + ;p2 (4"da)  -2A (4"4")', 

where T: = a&" + eeabcAi4c and FEy = a,At: + eeabcAiACY, and ansatz 

where Fa = r a / r ,  the equations of motion reduce to 

r2(H,, - H,n) = 2HK2 + (A/e2) (H3 - C3r2H),  r2J,,, = 2JK2 
(1.3) 

r 2 ( K , , , - K , r r ) = K ( K 2 - 1 ) + K ( H 2 - J 2 ) ,  rJ,r,=J,,, ( J , r .  K)+2(K,r. J ) = O  

where C = p e / J A  and H,, = (a/ar)H(r, t ) .  
Further, they have shown that, in the limit A + 0 with C fixed, equations (1.3) for 

the time-dependent case reduce to 

r 2 ( K , , - K , , , ) = K ( K 2 -  I)+KH', r2(H,,, - H,,,) = 2HK2,  J = O .  (1.4) 

Equations (1.4) have been solved by Mecklenburg and O'Brien (1978) under the 
assumptions 

K = K(Y ), H = H ( y )  (1.5) 

r*(K,rr -K,tr) = y2K,yy, r2(H,, -H,rr) = y2H,yy. (1.6) 
In the present work we shall try instead to obtain solutions of (1.4) subject to (1.5) 

(1.7) 
where f and g are two functions. 

The solutions obtained will include the solutions of Mecklenburg and O'Brien as a 
special case. Later on we shall obtain some static solutions of (1.3) in the limit A -+ 0 with 
C fixed as well. The reason for taking (1.7) is explained in Appendix 1. 

where y = y ( r ,  t )  and 

and Y , , ~  - Y,rt = 0, which is equivalent to 

y = f ( r  + t )  + g ( r  - t )  
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2. Time-dependent solutions 

In this section we seek solutions of (1.4) subject to (1.5) and (1.7). since throughout this 
section we have J = 0, we omit writing it here. From (1.4), (1.5) and (1.7) 

r2K,yy(y,?-y,:) = K(K2- 1)+KH2, r2H,,,(y,,? - y,,7 = ~HK’. (2.1) 

Case 1. K,,, = 0 = H,,, 
Here from (2.1) either 

K = O  
or 

H = 0, K = k l .  

( 2 . 2 ~ )  

(2.2b) 

Using (1.5) and (1.7) we see that ( 2 . 2 ~ )  gives the following solution for (1.4): 

K=O, H =f(r+t)+g(r- t ) .  (2.3) 

However, from (1.2) and (2.3) one can check that the potentials and A: are 

Equations ( lS) ,  (1.7) and (2.2b) on the other hand give apure gauge field where the 
singular at r = 0, and the energy integral is divergent. 

energy integral vanishes. 

Case 2. Kyy, H y y  not both zero 
Here from (2.1) 

r2(y,?--~,:) = h(y)  

where h is some function. From (1.7) and (2.4) 
(2.4) 

where 

or simplifying (2.7) 

2f,ug,, +(U + v)f,uug,u =- f , u  

2f,ug,u +(U + u)f,ug,uu g,, 
or 

2(F - G )  = ( U  + 0)(Fu - G,) 

where F = l/f,,, and G = l/g,,. 
From (2.8) differentiating successively w.r.t. U and U 

1 F,,, = G,,, = T P  

where p is a constant, or 

(2.7) 

F =pu2+su +q,  G=pu’+s’v+q’ (2.9) 
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where p, q, s, q’, s’ are constants. Putting (2.9) into (2.8) we get s = 0 = s’, q’ = q, i.e. 

Case 2(a).  p = 0 
From (lS), (1.7) and (2.10) we note that one can without loss of generality set 

y = r  (2.11) 

Case 2 (b ) .  q = 0 
From (1.5), (1.7) and (2.10) we note that one can without loss of generality set 

y = r / ( r 2  - r 2 ) .  (2.12) 

From (lS), (2.11) and (2.12), after alittlecalculation, wesee that for bothcases 2(a) 
and 2(b) equations (1.6) are satisfied. Further we note that equations (2.11) and (2.12) 
here are respectively equations (38) and (39) of Mecklenburg and O’Brien (1978). Thus 
these two cases are the two cases mentioned by Mecklenburg and O’Brien (1978), and 
following them we note that case 2(a) is a static case and a particular solution of case 
2(a) is the Prasad-Sommerfield monopole (1975). Similarly we note that a particular 
solution of case 2(b) is the time-dependent solution obtained by Mecklenburg and 
O’Brien (1978). 

Case 2 ( c ) .  p f 0,  q f 0, pq > O  
Putting 

U = J q / p  tan e l ,  -42 < el < T/2 

v = J q / p  tan e2, -Ti2 < e2 < T/2 
(2.13) 

we get from (1.7), (2.6) and (2.10) 

Therefore equations (2.1) reduce to 

(2.15) 

A particular solution of (2.15) is given by 

H = 0, K = c o s ( y G )  (2.16) 

For the solution in (2.16), obviously K is finite everywhere, and from (2.13) and 

Then from the explicit expression for the energy integral in terms of H, K and their 
derivatives given by Mecklenburg and O’Brien (1978) one can easily show that for H 
and K given by (2.16) the energy integral is convergent. 

where p, q are constants with pq > 0, and y is given by (2.6), (2.13) and (2.14). 

(2.14) we note that for K given by (2.16) as r+O,  (1-K)-r  2 . 

Case 2 ( d ) .  p f 0, q # 0, pq < O  
Here 

(2.17) 
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where U, v are given by (2.6). Equations (2.1) reduce to 

(-pq)-' s i n h 2 ( y G ) K , , ,  = K ( K 2 -  1)+KH2 

(-pq)-' sinh2(ydYq)H,,, = 2HK2 

for (pu2+  q ) ( p v 2  + q )  > 0, and 

(pq)-' c o s h 2 ( y ~ ~ ~ ) K , , ,  = K ( K 2  - 1) +KHz 

(pq-' c o s h 2 ( y 6 ) H , , ,  = 2HK2 

(2.18) 

(2.19) 

for ( p u 2 + q ) ( p v 2 + q ) < 0 .  

However, a particular solution of (2.18) is 
Obviously from (2.18) and (2.19) one cannot get a regular solution for the system. 

H = 0, K = c o s h ( y G )  (2.20) 

where y is given by (2.17) and p q  < 0. 

3. A static solution 

In the limit A + 0 with C fixed a static solution of (1.3) is 

K = l ,  H = J = Pr2 + Q / r  

where P, Q are constants. The solution is obviously irregular. 

(3.1) 

4. Conclusions 

Thus, summarily, the Prasad-Sommerfield solution (1975) and the Mecklenburg- 
O'Brien solution (1978) are particular cases of a class of solutions of (1.4) that satisfy 
(1.5) and (1.7). Three other such solutions are obtained here, given respectively by 
(2.3), (2.16) and(2.20), thelast one beingvalidonlyin the region ( p u 2 + q ) ( p v 2 + q ) > 0 .  
Also in (3.1) we have obtained a static solution of (1.3) in the limit A + 0 with C fixed. Of 
the new solutions shown here the most interesting is the one given by (2.16), because 
that is a time-dependent solution that is regular with a finite energy integral. 

Also, it can be noted that, although (1.7) was introduced as a condition in addition to 
(lS), in fact (1.7) follows from (1.5) except when H and K satisfy any  one of the 
following relations: 

H = 0 ,  H = K + l ,  H = K - 1 ,  H = - K - 1 ,  H = - K + l .  (4.la-e) 

However, satisfaction of (4.1) does not preclude (1.7), as can be seen from (2.16). 
In fact, when both (1.7) and (4.1) hold, the equations for cases 2(c), i.e. equations 

(2.15), reduce to 

(sin2 y)K,,, = K ( K 2 -  1) 

(sin2 y)K,,, = 2K2(K + 1) for (4.16) and (4.ld) 

(sin2 y)K,,, = 2K2(K - 1) for ( 4 . 1 ~ )  and (4.le).  

for ( 4 . 1 4  

(4.2) 
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Similarly in cases 2(u) and 2 ( b )  the equations reduce to 

y2K,,, = K ( K 2  - 1) for ( 4 . 1 ~ )  

y2K,,, = 2K2(K + 1) for (4.lb) and ( 4 . 1 4  

y2K,,, = 2K2(K - 1) for (4 .14  and (4.le). 

(4.3) 

Thus the problem is reduced to a single ordinary differential equation. Although we 
have not obtained any solution of these equations other than the one in (2.16), the forms 
in (4.2) and (4.3) may lead to new solutions. 

Proof that solutions of (1.4) that satisfy (1.5) must satisfy at least one of (1.7) and 
(4.1) is given in Appendix 1. 

Appendix 1 

From (1.4) and (1.5) 
2 

( A l .  1) 

If H and K are linearly related then, substituting that linear relation into (Al . l ) ,  we 
see that at least one of (1.7) and (4.1) must hold. If, on the other hand, H and K are not 
linearly related, then from ( A l . l )  and (1.5) 

r 2 (Y,rr-y,tt)=cL(y), r 2 ( y , : - y , 3 = ~ ( ~ )  (A1.2) 

r2(~,,2(y,rr - y,n) + K,yy(y,r - Y,?)) = K(K'- 1) + K H ~  
r2(H,,2(y,rr - Y A  +H,,,(Y,,z - Y,?N = 2HK2. 

where tj and x are some functions. 
If ~ ( y )  = 0, then either y , ,  - Y , ~  = 0 or 
If ~ ( y )  # 0 then from (A1.2) 

+ Y , ~  = 0. In either case (1.7) is satisfied. 

Y,YU/Y,UY,U = t j(Y)/X(Y) 

or 

or 

or 

where p is some function. 

transformation 
Since in (1.5) y can be replaced by an arbitrary function of y by making a 

we see that (1.7) is satisfied by virtue of (A1.3). 
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